Maximum Likelihood Density Estimation under Total Positivity

Elina Robeva MIT

joint work with Bernd Sturmfels, Ngoc Tran, and Caroline Uhler arXiv:1806.10120

ICERM Workshop on Nonlinear Algebra in Applications

November 12, 2018

Density estimation

Given i.i.d. samples $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$ from an unknown distribution on \mathbb{R}^d with density p, can we estimate p?

Density estimation

Given i.i.d. samples $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$ from an unknown distribution on \mathbb{R}^d with density p, can we estimate p?

- parametric: assume that p lies in some parametric family, and estimate parameters
 - finite-dimensional problem
 - too restrictive; the real-world distribution might not lie in the specified parametric family
- non-parametric: assume that p lies in a non-parametric family, e.g. impose shape-constraints on p (convex, log-concave, monotone, etc.)
 - infinite-dimensional problem
 - need constraints that are:
 - strong enough so that there is no spiky behavior
 - weak enough so that function class is large

Shape-constrained density estimation

- monotonically decreasing densities: [Grenander 1956, Rao 1969]
- convex densities: [Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001]
- log-concave densities: [Cule, Samworth, and Stewart 2008]
- generalized additive models with shape constraints: [Chen and Samworth 2016]

this talk: totally positive and log-concave densities

MTP₂ distributions

• A distribution with density p on $\mathcal{X} \subseteq \mathbb{R}^d$ is multivariate totally positive of order 2 (or MTP_2) if

$$p(x)p(y) \le p(x \land y)p(x \lor y)$$
 for all $x, y \in \mathcal{X}$,

where $x \wedge y$ and $x \vee y$ are the componentwise minimum and maximum.

MTP₂ distributions

• A distribution with density p on $\mathcal{X} \subseteq \mathbb{R}^d$ is multivariate totally positive of order 2 (or MTP_2) if

$$p(x)p(y) \le p(x \land y)p(x \lor y)$$
 for all $x, y \in \mathcal{X}$,

where $x \wedge y$ and $x \vee y$ are the componentwise minimum and maximum.

• MTP₂ is the same as *log-supermodular*:

$$\log(p(x)) + \log(p(y)) \le \log(p(x \land y)) + \log(p(x \lor y))$$
 for all $x, y \in \mathcal{X}$.

MTP₂ distributions

• A distribution with density p on $\mathcal{X} \subseteq \mathbb{R}^d$ is multivariate totally positive of order 2 (or MTP_2) if

$$p(x)p(y) \le p(x \land y)p(x \lor y)$$
 for all $x, y \in \mathcal{X}$,

where $x \wedge y$ and $x \vee y$ are the componentwise minimum and maximum.

• MTP₂ is the same as *log-supermodular*:

$$\log(p(x)) + \log(p(y)) \le \log(p(x \land y)) + \log(p(x \lor y)) \quad \text{ for all } x, y \in \mathcal{X}.$$

• A random vector X taking values in \mathbb{R}^d is *positively associated* if for any non-decreasing functions $\phi, \psi : \mathbb{R}^d \to \mathbb{R}$

$$cov(\phi(X), \psi(X)) \ge 0.$$

MTP₂ implies positive association (Fortuin Kasteleyn Ginibre inequality, 1971).

Properties of MTP₂ distributions

Theorem (Fallat, Lauritzen, Sadeghi, Uhler, Wermuth and Zwiernik, 2015)

If
$$X = (X_1, \dots, X_d)$$
 is MTP₂, then

- (i) any marginal distribution is MTP_2 ,
- (ii) any conditional distribution is MTP₂,
- (iii) X has the marginal independence structure

$$X_i \perp \!\!\! \perp X_j \Longleftrightarrow cov(X_i, X_j) = 0.$$

Theorem (Karlin and Rinott, 1980)

If p(x) > 0 and p is MTP₂ for any pair of coordinates when the others are held constant, then p is MTP₂.

Examples of MTP₂ distributions

- A Gaussian random variable $X \sim \mathcal{N}(\mu, \Sigma)$ is MTP₂ whenever Σ^{-1} is an M-matrix, i.e. its off-diagonal entries are nonpositive.
- The joint distribution of observed variables influenced by one hidden variable

- Very common in real data: e.g. IQ test scores, phylogenetics data, financial econometrics data, and others
- Many models imply MTP₂:
 - Ferromagnetic Ising models
 - Order statistics of i.i.d. variables
 - Brownian motion tree models
 - Latent tree models (e.g. single factor analysis models)

Maximum Likelihood Estimation

Given i.i.d. samples $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$ with weights $w = (w_1, \dots, w_n)$ (where $w_1, \dots, w_n \geq 0$, $\sum w_i = 1$) from a distribution p on \mathbb{R}^d , can we estimate p?

Maximum Likelihood Estimation

Given i.i.d. samples $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ with weights $w = (w_1, \ldots, w_n)$ (where $w_1, \ldots, w_n \geq 0$, $\sum w_i = 1$) from a distribution p on \mathbb{R}^d , can we estimate p?

The *log-likelihood* of observing $X = \{x_1, \ldots, x_n\}$ with weights $w = (w_1, \ldots, w_n)$ if they are drawn i.i.d. from p is (up to an additive constant)

$$\ell_p(X, w) := \sum_{i=1}^n w_i \log(p(x_i)).$$

Maximum Likelihood Estimation

Given i.i.d. samples $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$ with weights $w = (w_1, \dots, w_n)$ (where $w_1, \dots, w_n \geq 0$, $\sum w_i = 1$) from a distribution p on \mathbb{R}^d , can we estimate p?

The *log-likelihood* of observing $X = \{x_1, \ldots, x_n\}$ with weights $w = (w_1, \ldots, w_n)$ if they are drawn i.i.d. from p is (up to an additive constant)

$$\ell_p(X, w) := \sum_{i=1}^n w_i \log(p(x_i)).$$

We would like to

$$\mathsf{maximize}_p \quad \sum_{i=1}^n w_i \log(p(x_i))$$

s.t. p is an MTP₂ density.

Suppose we observe two points: $X=\{x_1,x_2\}\subset \mathbb{R}^2$. We can find a sequence of MTP₂ densities p_1,p_2,p_3,\ldots such that

$$\ell_{p_n}(X) \to \infty$$
 as $n \to \infty$.

Thus, the MLE doesn't exist.

Suppose we observe two points: $X=\{x_1,x_2\}\subset \mathbb{R}^2$. We can find a sequence of MTP₂ densities p_1,p_2,p_3,\ldots such that

$$\ell_{p_n}(X) \to \infty$$
 as $n \to \infty$.

Thus, the MLE doesn't exist.

To ensure that the likelihood function is bounded, we impose the condition that p is log-concave.

maximize_p
$$\sum_{i=1}^{n} w_i \log(p(x_i))$$
s.t. p is an MTP₂ density,

To ensure that the likelihood function is bounded, we impose the condition that p is log-concave.

maximize_p
$$\sum_{i=1}^{n} w_i \log(p(x_i))$$

s.t. p is an MTP₂ density,
and p is log-concave.

A function $f: \mathbb{R}^d \to \mathbb{R}$ is *log-concave* if its logarithm is concave.

To ensure that the likelihood function is bounded, we impose the condition that p is log-concave.

maximize_p
$$\sum_{i=1}^{n} w_i \log(p(x_i))$$

s.t. p is an MTP₂ density,
and p is log-concave.

A function $f: \mathbb{R}^d \to \mathbb{R}$ is *log-concave* if its logarithm is concave.

- Log-concavity is a natural assumption because it ensures the density is continuous and includes many known families of parametric distributions.
- Log-concave families:
 - Gaussian; Uniform(a, b); Gamma (k, θ) for $k \ge 1$; Beta(a, b) for $a, b \ge 1$.
- Maximum likelihood estimation under log-concavity is a well-studied problem (Cule et al. 2008, Dümbgen et al. 2009, Schuhmacher et al. 2010, ...).

Maximum Likelihood Estimation under Log-Concavity

```
maximize<sub>p</sub> \sum_{i=1}^{n} w_i \log(p(x_i))
s.t. p is a density
and p is log-concave.
```

Maximum Likelihood Estimation under Log-Concavity

maximize_p
$$\sum_{i=1}^{n} w_i \log(p(x_i))$$
s.t. p is a density
and p is log-concave.

Theorem (Cule, Samworth and Stewart 2008)

• With probability 1, a log-concave maximum likelihood estimator \hat{p} exists and is unique.

Maximum Likelihood Estimation under Log-Concavity

maximize_p
$$\sum_{i=1}^{n} w_i \log(p(x_i))$$
s.t. p is a density
and p is log-concave.

Theorem (Cule, Samworth and Stewart 2008)

- With probability 1, a log-concave maximum likelihood estimator \hat{p} exists and is unique.
- Moreover, $log(\hat{p})$ is a 'tent-function' supported on the convex hull of the data $P(X) = conv(x_1, ..., x_n)$.

Given points $X=\{x_1,\ldots,x_n\}$ and heights $y=(y_1,\ldots,y_n)\in\mathbb{R}^n$, the tent function

$$h_{X,y}:\mathbb{R}^d\to\mathbb{R}$$

is the smallest concave function such that $h_{X,y}(x_i) \ge y_i$ for all i. Thus, $\hat{p} = \exp(h_{X,y})$ for some y.

Given points $X=\{x_1,\ldots,x_n\}$ and heights $y=(y_1,\ldots,y_n)\in\mathbb{R}^n$, the tent function

$$h_{X,y}: \mathbb{R}^d \to \mathbb{R}$$

is the smallest concave function such that $h_{X,y}(x_i) \ge y_i$ for all i. Thus, $\hat{p} = \exp(h_{X,y})$ for some y.

$$\begin{array}{ll} \mathsf{maximize}_p & \sum_{i=1}^n w_i \log(p(x_i)) \\ \mathsf{s.t.} & p \text{ is a density} \\ \mathsf{and} & p \text{ is log-concave.} \end{array}$$

Given points
$$X = \{x_1, \dots, x_n\}$$
 and heights $y = (y_1, \dots, y_n) \in \mathbb{R}^n$, the tent function

$$h_{X,y}: \mathbb{R}^d \to \mathbb{R}$$

is the smallest concave function such that $h_{X,y}(x_i) \ge y_i$ for all i. Thus, $\hat{p} = \exp(h_{X,y})$ for some y.

$$\begin{array}{ll} \mathsf{maximize}_p & \sum_{i=1}^n w_i \log(p(x_i)) & \mathsf{maximize}_{y \in \mathbb{R}^n} & \sum_{i=1}^n w_i \log \exp(h_{X,y}(x_i)) \\ \mathsf{s.t.} & p \text{ is a density} \\ \mathsf{and} & p \text{ is log-concave.} & \mathsf{s.t.} & \exp(h_{X,y}) \text{ is a density.} \end{array}$$

INFINITE DIMENSIONAL

FINITE DIMENSIONAL

Given points
$$X = \{x_1, \dots, x_n\}$$
 and heights $y = (y_1, \dots, y_n) \in \mathbb{R}^n$, the tent function

$$h_{X,y}:\mathbb{R}^d \to \mathbb{R}$$

is the smallest concave function such that $h_{X,y}(x_i) \ge y_i$ for all i. Thus, $\hat{p} = \exp(h_{X,y})$ for some y.

$$\mathsf{maximize}_{y \in \mathbb{R}^n} \quad \sum_{i=1}^n w_i h_{X,y}(x_i)$$

s.t. $exp(h_{X,y})$ is a density.

Given points $X = \{x_1, \dots, x_n\}$ and heights $y = (y_1, \dots, y_n) \in \mathbb{R}^n$, the tent function

$$h_{X,y}: \mathbb{R}^d \to \mathbb{R}$$

is the smallest concave function such that $h_{X,y}(x_i) \ge y_i$ for all i. Thus, $\hat{p} = \exp(h_{X,y})$ for some y.

$$\begin{array}{ll} \mathsf{maximize}_p & \sum_{i=1}^n w_i \log(p(x_i)) \\ \mathsf{s.t.} & p \text{ is a density} \\ \mathsf{and} & p \text{ is log-concave.} \end{array}$$

$$\mathsf{maximize}_{y \in \mathbb{R}^n} \quad \sum_{i=1}^n w_i y_i$$

s.t. $\exp(h_{X,y})$ is a density.

Given points
$$X = \{x_1, \dots, x_n\}$$
 and heights $y = (y_1, \dots, y_n) \in \mathbb{R}^n$, the tent function

$$h_{X,y}: \mathbb{R}^d \to \mathbb{R}$$

is the smallest concave function such that $h_{X,y}(x_i) \ge y_i$ for all i. Thus, $\hat{p} = \exp(h_{X,y})$ for some y.

$$\begin{array}{ll} \mathsf{maximize}_p & \sum_{i=1}^n w_i \log(p(\mathsf{x}_i)) & \mathsf{maximize}_{y \in \mathbb{R}^n} & \sum_{i=1}^n w_i y_i \\ \mathsf{s.t.} & p \text{ is a density} \\ \mathsf{and} & p \text{ is log-concave.} & \mathsf{s.t.} & \int \exp(h_{X,y}(t)) dt = 1 \end{array}$$

INFINITE DIMENSIONAL

FINITE DIMENSIONAL

Given points $X = \{x_1, \dots, x_n\}$ and heights $y = (y_1, \dots, y_n) \in \mathbb{R}^n$, the tent function

$$h_{X,y}: \mathbb{R}^d \to \mathbb{R}$$

is the smallest concave function such that $h_{X,y}(x_i) \ge y_i$ for all i. Thus, $\hat{p} = \exp(h_{X,y})$ for some y.

$$\begin{array}{ll} \mathsf{maximize}_p & \sum_{i=1}^n w_i \log(p(x_i)) \\ \mathsf{s.t.} & p \text{ is a density} \\ \mathsf{and} & p \text{ is log-concave.} \end{array} \qquad \mathsf{max}_{y \in \mathbb{R}^n} \quad \sum_{i=1}^n w_i y_i - \int \exp(h_{X,y}(t)) dt$$

INFINITE DIMENSIONAL

Maximum Likelihood Estimation under Log-concavity and MTP₂

Questions:

- Does the MLE under log-concavity and MTP₂ exist with probability 1 and, if so, is it unique?
- 2. What is the shape of the MLE under log-concavity and MTP₂?
 - 2.1 What is the support of the MLE?
 - 2.2 Is the MLE always exp(tent function)?
- 3. Which tent functions are allowed?
- 4. Can we compute the MLE?

Maximum Likelihood Estimation under Log-concavity and MTP_2

Questions:

- 1. Does the MLE under log-concavity and MTP₂ exist with probability 1 and, if so, is it unique?
- 2. What is the shape of the MLE under log-concavity and MTP₂?
 - 2.1 What is the support of the MLE?
 - 2.2 Is the MLE always exp(tent function)?
- 3. Which tent functions are allowed?
- 4. Can we compute the MLE?

Recall: p is MTP₂ if and only if log(p) is supermodular, i.e.

 $\log p(x) + \log p(y) \le \log p(x \land y) + \log p(x \lor y), \text{ for all } x, y.$

Existence and Uniqueness of the MLE

Theorem (R., Sturmfels, Tran, Uhler)

The maximum likelihood estimator under log-concavity and MTP_2 exists and is unique with probability 1 as long as there are at least 3 samples.

Proof uses convergence properties for log-concave distributions, and does not shed light on the shape of the MLE.

Consider the following samples:

•

•

•

Under log-concavity, the support of the MLE is the convex hull:

Under log-concavity and MTP_2 we need the density to be nonzero at more points:

Under log-concavity and MTP_2 we need the density to be nonzero at more points:

and we need the convex hull of all of these points.

Support of the MLE = "min-max convex hull" of X.

The Min-Max Convex Hull

Definition

 $\mathsf{MM}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathsf{set} \ S \ \mathsf{containing} \ X, \ \mathsf{i.e.} \ x,y \in S \Rightarrow x \land y, x \lor y \in S$ $\mathsf{MMconv}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathit{and} \ \mathit{convex} \ \mathsf{set} \ \mathsf{containing} \ X.$

The Min-Max Convex Hull

Definition

 $\mathsf{MM}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathsf{set} \ S \ \mathsf{containing} \ X, \ \mathsf{i.e.} \ x,y \in S \Rightarrow x \land y, x \lor y \in S$ $\mathsf{MMconv}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathit{and} \ \mathit{convex} \ \mathsf{set} \ \mathsf{containing} \ X.$

• How can we find $\mathsf{MMconv}(X)$ for $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$?

Definition

 $\mathsf{MM}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathsf{set} \ S \ \mathsf{containing} \ X, \ \mathsf{i.e.} \ x,y \in S \Rightarrow x \land y,x \lor y \in S$ $\mathsf{MMconv}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathit{and} \ \mathit{convex} \ \mathsf{set} \ \mathsf{containing} \ X.$

- How can we find MMconv(X) for $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$?
- Intuitive first proposal:
- . . .
 - .
 - Start with X.

Add points to X until we get MM(X).

Definition

 $\mathsf{MM}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathsf{set} \ S \ \mathsf{containing} \ X, \ \mathsf{i.e.} \ x,y \in S \Rightarrow x \land y, x \lor y \in S$ $\mathsf{MMconv}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathit{and} \ \mathit{convex} \ \mathsf{set} \ \mathsf{containing} \ X.$

- How can we find MMconv(X) for $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$?
- Intuitive first proposal:

• • • • • • • •

• • •

Start with X. Add points to X until we get MM(X).

Definition

 $\mathsf{MM}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathsf{set} \ S \ \mathsf{containing} \ X, \ \mathsf{i.e.} \ x,y \in S \Rightarrow x \land y,x \lor y \in S$ $\mathsf{MMconv}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathit{and} \ \mathit{convex} \ \mathsf{set} \ \mathsf{containing} \ X.$

- How can we find $\mathsf{MMconv}(X)$ for $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$?
- Intuitive first proposal:

Start with X. Add points to X

Add points to X until we get MM(X).

Definition

 $\mathsf{MM}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathsf{set} \ S \ \mathsf{containing} \ X, \ \mathsf{i.e.} \ x,y \in S \Rightarrow x \land y, x \lor y \in S$ $\mathsf{MMconv}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathit{and} \ \mathit{convex} \ \mathsf{set} \ \mathsf{containing} \ X.$

- How can we find MMconv(X) for $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$?
- Intuitive first proposal:
- - Start with X. Add points to X until we get MM(X).

Definition

 $\mathsf{MM}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathsf{set} \ S \ \mathsf{containing} \ X, \ \mathsf{i.e.} \ x,y \in S \Rightarrow x \land y,x \lor y \in S$ $\mathsf{MMconv}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathit{and} \ \mathit{convex} \ \mathsf{set} \ \mathsf{containing} \ X.$

- How can we find MMconv(X) for $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$?
- Intuitive first proposal:

Definition

 $\mathsf{MM}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathsf{set} \ S \ \mathsf{containing} \ X, \ \mathsf{i.e.} \ x,y \in S \Rightarrow x \land y,x \lor y \in S$ $\mathsf{MMconv}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathit{and} \ \mathit{convex} \ \mathsf{set} \ \mathsf{containing} \ X.$

- How can we find MMconv(X) for $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$?
- Intuitive first proposal:

Is it always true that MMconv(X) = conv(MM(X))?

Definition

 $\mathsf{MM}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathsf{set} \ S \ \mathsf{containing} \ X, \ \mathsf{i.e.} \ x,y \in S \Rightarrow x \land y,x \lor y \in S$ $\mathsf{MMconv}(X) = \mathsf{smallest} \ \mathit{min-max} \ \mathit{closed} \ \mathit{and} \ \mathit{convex} \ \mathsf{set} \ \mathsf{containing} \ X.$

- How can we find MMconv(X) for $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$?
- Intuitive first proposal:

Is it always true that MMconv(X) = conv(MM(X))?

Lemma

Let
$$X=\{x_1,\ldots,x_n\}.$$
 If $X\subseteq\mathbb{R}^2$ or $X\subseteq\{0,1\}^d,$ then,

$$MMconv(X) = conv(MM(X)).$$

Lemma

Let
$$X=\{x_1,\ldots,x_n\}$$
. If $X\subseteq\mathbb{R}^2$ or $X\subseteq\{0,1\}^d$, then,

$$MMconv(X) = conv(MM(X)).$$

Now, consider $X = \{(0,0,0), (6,0,0), (6,4,0), (8,4,2)\} \subseteq \mathbb{R}^3$.

It turns out that

$$MM(X) = X$$
.

But

conv(MM(X)) is **not min-max closed**!

Lemma

Let $X = \{x_1, \dots, x_n\}$. If $X \subseteq \mathbb{R}^2$ or $X \subseteq \{0, 1\}^d$, then,

$$MMconv(X) = conv(MM(X)).$$

Now, consider $X = \{(0,0,0), (6,0,0), (6,4,0), (8,4,2)\} \subseteq \mathbb{R}^3$.

It turns out that

$$MM(X) = X$$
.

But

conv(MM(X)) is **not min-max closed!**

This is because:

$$(6,4,\frac{3}{2}) = \max\{(6,4,0),(6,3,\frac{3}{2})\} \not\in \mathsf{conv}(\mathsf{MM}(X)).$$

Lemma

Let $X = \{x_1, \dots, x_n\}$. If $X \subseteq \mathbb{R}^2$ or $X \subseteq \{0, 1\}^d$, then,

$$MMconv(X) = conv(MM(X)).$$

Now, consider $X = \{(0,0,0), (6,0,0), (6,4,0), (8,4,2)\} \subseteq \mathbb{R}^3$.

It turns out that

$$MM(X) = X$$
.

But

conv(MM(X)) is not min-max closed!

This is because:

$$(6,4,\frac{3}{2}) = \max\{(6,4,0),(6,3,\frac{3}{2})\} \not\in \mathsf{conv}(\mathsf{MM}(X)).$$

Therefore,

$$conv(MM(X)) \subseteq MMconv(X)$$
.

The 2-D Projections Theorem

Theorem (The 2-D Projections Theorem)

For any finite subset $X \subseteq \mathbb{R}^d$. Then we have

$$\mathit{MMconv}(X) = \bigcap_{1 \le i \le j \le d} \pi_{ij}^{-1} \left(\mathit{conv}(\pi_{ij}(\mathit{MM}(X))) \right).$$

$$\pi_{ij}: \mathbb{R}^d \to \mathbb{R},$$

 $x \mapsto (x_i, x_j).$

The 2-D Projections Theorem

Theorem (The 2-D Projections Theorem)

For any finite subset $X \subseteq \mathbb{R}^d$. Then we have

$$extit{MMconv}(X) = \bigcap_{1 \leq i \leq d} \pi_{ij}^{-1} \left(extit{conv}(\pi_{ij}(extit{MM}(X))) \right). \qquad \qquad \begin{aligned} \pi_{ij} : \mathbb{R}^d &\to \mathbb{R}, \\ x \mapsto (x_i, x_j). \end{aligned}$$

Corollary (Queyranne and Tardella, 2006)

A subset C in \mathbb{R}^d is a min-max closed convex polytope if and only if it is defined by a finite collection of bimonotone linear inequalities.

A linear inequality $a \cdot x + b \le 0$ is bimonotone if it has the form

$$a_i x_i + a_i x_i + b \le 0$$
, where $a_i a_i \le 0$.

Back to Log-concave and MTP₂ Maximum Likelihood Estimation

- Does the MLE under log-concavity and MTP₂ exist with probability 1 and, if so, is it unique? Yes.
- 2. What is the shape of the MLE under log-concavity and MTP₂?
 - 2.1 What is the support of the MLE? MMconv(X); We can compute it.
 - 2.2 Is the MLE always exp(tent function)?
- 3. Which tent functions are allowed?
- 4. Can we compute the MLE?

Supermodular Tent Functions

Recall that $p = \exp(h)$ is MTP₂ if and only if h is supermodular, i.e.

$$h(x) + h(y) \le h(x \land y) + h(x \lor y)$$
, for all $x, y \in \mathbb{R}^d$.

Theorem (R., Sturmfels, Tran, Uhler)

Let $X \subset \mathbb{R}^d$ be a finite set of points. A tent function h is supermodular if and only if all of the walls of the subdivision h induces are **bimonotone**.

Remark

If we want to find the best supermodular $h_{X,y}$, we need to optimize over the set of heights y that induce bimonotone subdivisions.

- In general not convex.
- Example: $X = \{0,1\} \times \{0,1\} \times \{0,1,2\}$.

Supermodular Tent Functions

Recall that $p = \exp(h)$ is MTP₂ if and only if h is supermodular, i.e.

$$h(x) + h(y) \le h(x \land y) + h(x \lor y)$$
, for all $x, y \in \mathbb{R}^d$.

Theorem (R., Sturmfels, Tran, Uhler)

Let $X \subset \mathbb{R}^d$ be a finite set of points. A tent function h is supermodular if and only if all of the walls of the subdivision h induces are **bimonotone**.

Remark

If we want to find the best supermodular $h_{X,y}$, we need to optimize over the set of heights y that induce bimonotone subdivisions.

- In general not convex.
- Example: $X = \{0,1\} \times \{0,1\} \times \{0,1,2\}$.

Is the MLE is the exponential of a tent function?

- Does the MLE under log-concavity and MTP₂ exist with probability 1 and, if so, is it unique? Yes.
- 2. What is the shape of the MLE under log-concavity and MTP₂?
 - 2.1 What is the support of the MLE? MMconv(X); We can compute it.
 - 2.2 Is the MLE always exp(tent function)?
- 3. Which tent functions are allowed? Bimonotone tent functions.
- 4. Can we compute the MLE?

Recall:

$$\begin{array}{ll} \mathsf{maximize}_p & \sum_{i=1}^n w_i \log(p(x_i)) \\ \mathsf{s.t.} & p \text{ is a density} \\ \mathsf{and} & p \text{ is log-concave.} \end{array}$$

Theorem (Cule, Samworth and Stewart 2008)

- With probability 1, a log-concave maximum likelihood estimator p exists and is unique.
- Moreover, $log(\hat{p})$ is a 'tent-function' supported on the convex hull of the data $P(X) = conv(x_1, ..., x_n)$.

$$\begin{array}{ll} \mathsf{maximize}_p & \sum_{i=1}^n w_i \log(p(x_i)) \\ \mathsf{s.t.} & p \text{ is a density} \\ \mathsf{and} & p \text{ is log-concave.} \end{array}$$

Proof of theorem:

- Suppose that p^* is the MLE and that $\log p^*$ is not a tent function.
- Let $y_i = \log p^*(x_i), i = 1, ..., n$.
- Consider $p = \exp(h_{X,y})$. It gives a higher objective value than p^* .
- Thus, p* has to be a tent function.

Proof of theorem:

- Suppose that p^* is the MLE and that $\log p^*$ is not a tent function.
- Let $y_i = \log p^*(x_i), i = 1, ..., n$.
- Consider $p = \exp(h_{X,y})$. It gives a higher objective value than p^* .
- Thus, p^* has to be a tent function.

$$\begin{array}{ll} \mathsf{maximize}_p & \sum_{i=1}^n w_i \log(p(x_i)) \\ \mathsf{s.t.} & p \text{ is a density} \\ \mathsf{and} & p \text{ is log-concave.} \end{array}$$

Proof of theorem:

- Suppose that p^* is the MLE and that $\log p^*$ is not a tent function.
- Let $y_i = \log p^*(x_i), i = 1, ..., n$.
- Consider $p = \exp(h_{X,y})$. It gives a higher objective value than p^* .
- Thus, p^* has to be a tent function.

Proving that the Log-concave MTP₂ MLE is the exponential of a tent function

$$\begin{array}{ll} \text{maximize}_p & \sum_{i=1}^n w_i \log(p(x_i)) \\ \text{s.t.} & p \text{ is a log-concave density} \\ \text{and} & p \text{ is MTP}_2. \end{array}$$

Proof that the MLE is a tent function:

- Suppose that p^* is the MLE and that $\log p^*$ is not a tent function
- Let $y_i = \log p^*(x_i), i = 1, ..., n$.
- Consider $p = \exp(h_{X,y})$. It gives a higher objective value than p^* .
- Thus, p* has to be a tent function.

Proving that the Log-concave MTP₂ MLE is the exponential of a tent function

$$\begin{aligned} & \mathsf{maximize}_p & & \sum_{i=1}^n w_i \log(p(x_i)) \\ & \mathsf{s.t.} & p \text{ is a log-concave density} \\ & \mathsf{and} & p \text{ is } \mathsf{MTP}_2. \end{aligned}$$

Proof that the MLF is a tent function:

- Suppose that p^* is the MLE and that $\log p^*$ is not a tent function
- Let $y_i = \log p^*(x_i), i = 1, ..., n$.
- Consider $p = \exp(h_{X,y})$. It gives a higher objective value than p^* .
 - Problem: is $p = \exp(h_{X,y})$ always MTP₂ assuming that p^* is MTP₂?
- Thus, p* has to be a tent function.

When is the MLE the exponential of a tent function?

Definition

Let $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$ be a *min-max closed* configuration. Then X is **tidy** if

The restriction of $h_{X,y}$ to X \iff The whole function $h_{X,y}$ is supermodular is supermodular.

Example

If
$$X = \{(0,0), (0,1), (1,0), (1,1)\}$$
, then X is tidy because

$$y_{(0,0)} + y_{(1,1)} \ge y_{(0,1)} + y_{(1,0)} \implies h_{(X,y)}$$
 is supermodular.

Example

Consider again

$$X = \{(0,0,0), (6,0,0), (6,4,0), (8,4,2), (6,4,\frac{3}{2})\}.$$

- The restriction of any $h_{X,y}$ to X is supermodular.
- But not all $h_{X,y}$ are supermodular! \Longrightarrow Not tidy.

When is the MLE the exponential of a tent function?

Theorem (R., Sturmfels, Tran, Uhler)

Let $X \subseteq \mathbb{R}^d$ be min-max closed such that conv(X) = MMconv(X). Then, X is tidy if

- $X \subseteq \mathbb{R}^2$, or
- $X \subseteq \{0,1\}^d$.

Therefore, the MLE for configurations in \mathbb{R}^2 and in $\{0,1\}^d$ is always a tent function.

When is the MLE the exponential of a tent function?

Theorem (R., Sturmfels, Tran, Uhler)

Let $X \subseteq \mathbb{R}^d$ be min-max closed such that conv(X) = MMconv(X). Then, X is tidy if

- $X \subseteq \mathbb{R}^2$, or
- $X \subseteq \{0,1\}^d$.

Therefore, the MLE for configurations in \mathbb{R}^2 and in $\{0,1\}^d$ is always a tent function.

Conjecture

These are the only tidy configurations.

Optimization Problem in the Tidy Case

Theorem (R., Sturmfels, Tran, Uhler)

If $X \subseteq \mathbb{R}^d$ is a tidy configuration, then,

- The MLE p^* is the exponential of a $p^* = \exp(h_{X,y^*})$, and
- The set of heights for which $exp(h_{X,y})$ is MTP₂ is a convex polytope S.

Therefore, we can use, e.g. projected gradient descent or the conditional gradient method, to find the best heights y^* .

$$maximize_y \sum_{i=1}^n w_i y_i - \int \exp(h_{X,y})$$
 s.t. $y \in \mathcal{S}$.

Optimization Problem in the Tidy Case

Theorem (R., Sturmfels, Tran, Uhler)

If $X \subseteq \mathbb{R}^d$ is a tidy configuration, then,

- The MLE p^* is the exponential of a $p^* = \exp(h_{X,v^*})$, and
- The set of heights for which $\exp(h_{X,y})$ is MTP_2 is a convex polytope S.

Therefore, we can use, e.g. projected gradient descent or the conditional gradient method, to find the best heights y^* .

maximize_y
$$\sum_{i=1}^{n} w_i y_i - \int \exp(h_{X,y})$$

s.t. $y \in S$.

- In \mathbb{R}^2 and $\{0,1\}^d$ the MLE is the exponential of a tent function.
- If the log-concave MLE ϕ is a supermodular tent function, then ϕ is also the MTP $_2$ log-concave MLE.
- Let $X = \{(0,0,0), (6,0,0), (6,4,0), (8,4,2), (6,4,\frac{3}{2})\}, \ w = \frac{1}{28}(15,1,1,1,10).$ The log-concave MLE ϕ is not supermodular.

- In \mathbb{R}^2 and $\{0,1\}^d$ the MLE is the exponential of a tent function.
- If the log-concave MLE ϕ is a bimonotone tent function, then ϕ is also the MTP $_2$ log-concave MLE.
- Let $X = \{(0,0,0), (6,0,0), (6,4,0), (8,4,2), (6,4,\frac{3}{2})\}, \ w = \frac{1}{28}(15,1,1,1,10).$ The log-concave MLE ϕ is not bimonotone.

- In \mathbb{R}^2 and $\{0,1\}^d$ the MLE is the exponential of a tent function.
- If the log-concave MLE ϕ is a bimonotone tent function, then ϕ is also the MTP₂ log-concave MLE.
- Let $X = \{(0,0,0), (6,0,0), (6,4,0), (8,4,2), (6,4,\frac{3}{2})\}, \ w = \frac{1}{28}(15,1,1,1,10).$ The log-concave MLE ϕ is not bimonotone.

- In \mathbb{R}^2 and $\{0,1\}^d$ the MLE is the exponential of a tent function.
- If the log-concave MLE ϕ is a bimonotone tent function, then ϕ is also the MTP₂ log-concave MLE.
- Let $X = \{(0,0,0), (6,0,0), (6,4,0), (8,4,2), (6,4,\frac{3}{2})\}, \ w = \frac{1}{28}(15,1,1,1,10).$ The log-concave MLE ϕ is not bimonotone.

the MLE is a tent function on $X \cup \{(6,3,\frac{3}{2}),(7.5,4,\frac{3}{2})\}$ with subdivision as above.

Conjecture

Let $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ be a point configuration, and let $w \in \mathbb{R}^n$ be the corresponding set of weights. Let $\phi : \mathbb{R}^d \to \mathbb{R}$ be the log-concave maximum likelihood estimator (which is a tent function above X), and let Δ be the subdivision it induces.

- 1. If Δ is a bimonotone subdivision, then ϕ is also the MTP₂ log-concave MLE.
- If Δ is not bimonotone, consider the hyperplanes spanned by each of the bimonotone codimension 1 cells of Δ, and intersect conv(X) with them. Call this new subdivision Δ'. The MTP₂ log-concave maximum likelihood estimator is a piecewise linear function whose underlying subdivision is Δ' or any subdivision refined by Δ'.

Summary and Remaining Questions

Summary:

- We showed that the MLE under log-concavity and MTP₂ exists and is unique with probability one.
- We showed that in some cases it is the exponential of a tent function, and we can compute it using convex optimization over a finite-dimensional convex set.
- We saw which tent functions are supermodular, i.e. are candidates for the MLE.

Remaining questions and future work

- Characterize the shape of the MLE in the general case.
- Study the sample complexity of solving the problem.
- Design and analyze algorithms for finding the MLE.

Announcement

Applied Algebra Day Saturday, Nov 17 9:30AM - 5PM MIT, E17-304

Announcement

Applied Algebra Day Saturday, Nov 17 9:30AM - 5PM MIT, E17-304

Thank you!