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Density estimation

Given i.i.d. samples X = {x1, . . . , xn} ⊂ Rd from an unknown
distribution on Rd with density p, can we estimate p?

parametric: assume that p lies in some parametric family, and
estimate parameters

• finite-dimensional problem
• too restrictive; the real-world distribution might not lie in the

specified parametric family

non-parametric: assume that p lies in a non-parametric family, e.g.
impose shape-constraints on p (convex, log-concave, monotone,
etc.)

• infinite-dimensional problem
• need constraints that are:

• strong enough so that there is no spiky behavior
• weak enough so that function class is large
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Shape-constrained density estimation

• monotonically decreasing densities: [Grenander 1956, Rao 1969]

• convex densities: [Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001]

• log-concave densities: [Cule, Samworth, and Stewart 2008]

• generalized additive models with shape constraints: [Chen and Samworth

2016]

• this talk: totally positive and log-concave densities
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MTP2 distributions

• A distribution with density p on X ⊆ Rd is multivariate totally
positive of order 2 (or MTP2) if

p(x)p(y) ≤ p(x ∧ y)p(x ∨ y) for all x , y ∈ X ,

where x ∧ y and x ∨ y are the componentwise minimum and
maximum.

• MTP2 is the same as log-supermodular:

log(p(x))+log(p(y)) ≤ log(p(x∧y))+log(p(x∨y)) for all x , y ∈ X .

• A random vector X taking values in Rd is positively associated if for
any non-decreasing functions φ, ψ : Rd → R

cov(φ(X ), ψ(X )) ≥ 0.

• MTP2 implies positive association (Fortuin Kasteleyn Ginibre inequality, 1971).
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Properties of MTP2 distributions

Theorem (Fallat, Lauritzen, Sadeghi, Uhler, Wermuth and Zwiernik, 2015)

If X = (X1, . . . ,Xd) is MTP2, then

(i) any marginal distribution is MTP2,

(ii) any conditional distribution is MTP2,

(iii) X has the marginal independence structure

Xi ⊥⊥ Xj ⇐⇒ cov(Xi ,Xj) = 0.

Theorem (Karlin and Rinott, 1980)

If p(x) > 0 and p is MTP2 for any pair of coordinates when the others
are held constant, then p is MTP2.
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Examples of MTP2 distributions

• A Gaussian random variable X ∼ N (µ,Σ) is MTP2 whenever Σ−1

is an M-matrix, i.e. its off-diagonal entries are nonpositive.

• The joint distribution of observed variables influenced by one hidden
variable

Z

X1
X2 X3

X4

X5

• Very common in real data: e.g. IQ test scores, phylogenetics data,
financial econometrics data, and others

• Many models imply MTP2:

• Ferromagnetic Ising models
• Order statistics of i.i.d. variables
• Brownian motion tree models
• Latent tree models (e.g. single factor analysis models)
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Maximum Likelihood Estimation

Given i.i.d. samples X = {x1, . . . , xn} ⊂ Rd with weights
w = (w1, . . . ,wn) (where w1, . . . ,wn ≥ 0,

∑
wi = 1) from a distribution

p on Rd , can we estimate p?

The log-likelihood of observing X = {x1, . . . , xn} with weights
w = (w1, . . . ,wn) if they are drawn i.i.d. from p is (up to an additive
constant)

`p(X ,w) :=
n∑

i=1

wi log(p(xi )).

We would like to

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is an MTP2 density.

7 / 48



Maximum Likelihood Estimation

Given i.i.d. samples X = {x1, . . . , xn} ⊂ Rd with weights
w = (w1, . . . ,wn) (where w1, . . . ,wn ≥ 0,

∑
wi = 1) from a distribution

p on Rd , can we estimate p?

The log-likelihood of observing X = {x1, . . . , xn} with weights
w = (w1, . . . ,wn) if they are drawn i.i.d. from p is (up to an additive
constant)

`p(X ,w) :=
n∑

i=1

wi log(p(xi )).

We would like to

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is an MTP2 density.

7 / 48



Maximum Likelihood Estimation

Given i.i.d. samples X = {x1, . . . , xn} ⊂ Rd with weights
w = (w1, . . . ,wn) (where w1, . . . ,wn ≥ 0,

∑
wi = 1) from a distribution

p on Rd , can we estimate p?

The log-likelihood of observing X = {x1, . . . , xn} with weights
w = (w1, . . . ,wn) if they are drawn i.i.d. from p is (up to an additive
constant)

`p(X ,w) :=
n∑

i=1

wi log(p(xi )).

We would like to

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is an MTP2 density.

7 / 48



Maximum Likelihood Estimation under MTP2

Suppose we observe two points: X = {x1, x2} ⊂ R2. We can find a
sequence of MTP2 densities p1, p2, p3, . . . such that

`pn(X )→∞ as n→∞.

p1 p2 p3

x1

x2

x1

x2

x1

x2

Thus, the MLE doesn’t exist.
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Maximum Likelihood Estimation under MTP2
To ensure that the likelihood function is bounded, we impose the
condition that p is log-concave.

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is an MTP2 density,

and p is log-concave.

A function f : Rd → R is log-concave if its logarithm is concave.

• Log-concavity is a natural assumption because it ensures the density
is continuous and includes many known families of parametric
distributions.

• Log-concave families:
• Gaussian; Uniform(a, b); Gamma(k, θ) for k ≥ 1; Beta(a, b) for a, b ≥ 1.

• Maximum likelihood estimation under log-concavity is a well-studied
problem (Cule et al. 2008, Dümbgen et al. 2009, Schuhmacher et
al. 2010, . . .).
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Maximum Likelihood Estimation under Log-Concavity

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is a density

and p is log-concave.

Theorem (Cule, Samworth and Stewart 2008)

• With probability 1, a log-concave maximum likelihood estimator p̂
exists and is unique.

• Moreover, log(p̂) is a ’tent-function’ supported on the convex hull
of the data P(X ) = conv(x1, . . . , xn).

Log-concave density estimation 3

Fig. 1. The ‘tent-like’ structure of the graph of the logarithm of the maximum likelihood estimator for bivariate
data.

(2009) have studied its theoretical properties. Rufibach (2007) compared di↵erent algorithms for
computing the univariate estimator, including the iterative convex minorant algorithm (Groeneboom
and Wellner, 1992; Jongbloed, 1998), and three others. Dümbgen, Hüsler and Rufibach (2007)
also present an Active Set algorithm, which has similarities with the vertex direction and vertex
reduction algorithms described in Groeneboom, Jongbloed and Wellner (2008). Walther (2010)
provides a nice recent review article on inference and modelling with log-concave densities. Other
recent related work includes Seregin and Wellner (2009), Schuhmacher, Hüsler and Dümbgen (2010),
Schuhmacher and Dümbgen (2010) and Koenker and Mizera (2010). For univariate data, it is also
well-known that there exist maximum likelihood estimators of a non-increasing density supported on
[0,1) (Grenander, 1956) and of a convex, decreasing density (Groeneboom, Jongbloed and Wellner,
2001).

Figure 1 gives a diagram illustrating the structure of the maximum likelihood estimator on the
logarithmic scale. This structure is most easily visualised for two-dimensional data, where one can
imagine associating a ‘tent pole’ with each observation, extending vertically out of the plane. For
certain tent pole heights, the graph of the logarithm of the maximum likelihood estimator can be
thought of as the roof of a taut tent stretched over the tent poles. The fact that the logarithm of
the maximum likelihood estimator is of this ‘tent function’ form constitutes part of the proof of its
existence and uniqueness.

In Sections 3.1 and 3.2, we discuss the computational problem of how to adjust the n tent pole
heights so that the corresponding tent functions converge to the logarithm of the maximum likelihood
estimator. One reason that this computational problem is so challenging in more than one dimension
is the fact that it is di�cult to describe the set of tent pole heights that correspond to concave
functions. The key observation, discussed in Section 3.1, is that it is possible to minimise a modified
objective function that is convex (though non-di↵erentiable). This allows us to apply the powerful
non-di↵erentiable convex optimisation methodology of the subgradient method (Shor, 1985) and a
variant called Shor’s r-algorithm, which has been implemented by Kappel and Kuntsevich (2000).

As an illustration of the estimates obtained, Figure 2 presents plots of the maximum likelihood
estimator, and its logarithm, for 1000 observations from a standard bivariate normal distribution.
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objective function that is convex (though non-di↵erentiable). This allows us to apply the powerful
non-di↵erentiable convex optimisation methodology of the subgradient method (Shor, 1985) and a
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Given points X = {x1, . . . , xn} and heights y = (y1, . . . , yn) ∈ Rn, the tent function

hX ,y : Rd → R

is the smallest concave function such that hX ,y (xi ) ≥ yi for all i . Thus, p̂ = exp(hX ,y )
for some y .

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is a density

and p is log-concave.

INFINITE DIMENSIONAL

maximizey∈Rn

n∑
i=1

wi log exp(hX ,y (xi ))

s.t. exp(hX ,y ) is a density.

FINITE DIMENSIONAL
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also present an Active Set algorithm, which has similarities with the vertex direction and vertex
reduction algorithms described in Groeneboom, Jongbloed and Wellner (2008). Walther (2010)
provides a nice recent review article on inference and modelling with log-concave densities. Other
recent related work includes Seregin and Wellner (2009), Schuhmacher, Hüsler and Dümbgen (2010),
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FINITE DIMENSIONAL
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Fig. 1. The ‘tent-like’ structure of the graph of the logarithm of the maximum likelihood estimator for bivariate
data.

(2009) have studied its theoretical properties. Rufibach (2007) compared di↵erent algorithms for
computing the univariate estimator, including the iterative convex minorant algorithm (Groeneboom
and Wellner, 1992; Jongbloed, 1998), and three others. Dümbgen, Hüsler and Rufibach (2007)
also present an Active Set algorithm, which has similarities with the vertex direction and vertex
reduction algorithms described in Groeneboom, Jongbloed and Wellner (2008). Walther (2010)
provides a nice recent review article on inference and modelling with log-concave densities. Other
recent related work includes Seregin and Wellner (2009), Schuhmacher, Hüsler and Dümbgen (2010),
Schuhmacher and Dümbgen (2010) and Koenker and Mizera (2010). For univariate data, it is also
well-known that there exist maximum likelihood estimators of a non-increasing density supported on
[0,1) (Grenander, 1956) and of a convex, decreasing density (Groeneboom, Jongbloed and Wellner,
2001).

Figure 1 gives a diagram illustrating the structure of the maximum likelihood estimator on the
logarithmic scale. This structure is most easily visualised for two-dimensional data, where one can
imagine associating a ‘tent pole’ with each observation, extending vertically out of the plane. For
certain tent pole heights, the graph of the logarithm of the maximum likelihood estimator can be
thought of as the roof of a taut tent stretched over the tent poles. The fact that the logarithm of
the maximum likelihood estimator is of this ‘tent function’ form constitutes part of the proof of its
existence and uniqueness.

In Sections 3.1 and 3.2, we discuss the computational problem of how to adjust the n tent pole
heights so that the corresponding tent functions converge to the logarithm of the maximum likelihood
estimator. One reason that this computational problem is so challenging in more than one dimension
is the fact that it is di�cult to describe the set of tent pole heights that correspond to concave
functions. The key observation, discussed in Section 3.1, is that it is possible to minimise a modified
objective function that is convex (though non-di↵erentiable). This allows us to apply the powerful
non-di↵erentiable convex optimisation methodology of the subgradient method (Shor, 1985) and a
variant called Shor’s r-algorithm, which has been implemented by Kappel and Kuntsevich (2000).

As an illustration of the estimates obtained, Figure 2 presents plots of the maximum likelihood
estimator, and its logarithm, for 1000 observations from a standard bivariate normal distribution.

Given points X = {x1, . . . , xn} and heights y = (y1, . . . , yn) ∈ Rn, the tent function

hX ,y : Rd → R

is the smallest concave function such that hX ,y (xi ) ≥ yi for all i . Thus, p̂ = exp(hX ,y )
for some y .

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is a density

and p is log-concave.

INFINITE DIMENSIONAL

maximizey∈Rn

n∑
i=1

wihX ,y (xi )

s.t. exp(hX ,y ) is a density.

FINITE DIMENSIONAL
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maximizey∈Rn

n∑
i=1
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is the smallest concave function such that hX ,y (xi ) ≥ yi for all i . Thus, p̂ = exp(hX ,y )
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maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is a density

and p is log-concave.

INFINITE DIMENSIONAL

maximizey∈Rn

n∑
i=1

wiyi

s.t.

∫
exp(hX ,y (t))dt = 1

FINITE DIMENSIONAL
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Given points X = {x1, . . . , xn} and heights y = (y1, . . . , yn) ∈ Rn, the tent function
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maxy∈Rn

n∑
i=1

wiyi −
∫

exp(hX ,y (t))dt

FINITE DIMENSIONAL
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Maximum Likelihood Estimation under Log-concavity and
MTP2

Questions:

1. Does the MLE under log-concavity and MTP2 exist with probability 1 and, if so,
is it unique?

2. What is the shape of the MLE under log-concavity and MTP2?

2.1 What is the support of the MLE?
2.2 Is the MLE always exp(tent function)?

3. Which tent functions are allowed?

4. Can we compute the MLE?

Recall: p is MTP2 if and only if log(p) is supermodular, i.e.

log p(x) + log p(y) ≤ log p(x ∧ y) + log p(x ∨ y), for all x , y .
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Existence and Uniqueness of the MLE

Theorem (R., Sturmfels, Tran, Uhler)

The maximum likelihood estimator under log-concavity and MTP2

exists and is unique with probability 1 as long as there are at least
3 samples.

Proof uses convergence properties for log-concave distributions,
and does not shed light on the shape of the MLE.
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The Support of the MLE

Consider the following samples:
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The Support of the MLE

Under log-concavity, the support of the MLE is the convex hull:
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The Support of the MLE

Under log-concavity and MTP2 we need the density to be nonzero at
more points:
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The Support of the MLE

Under log-concavity and MTP2 we need the density to be nonzero at
more points:

and we need the convex hull of all of these points.

Support of the MLE = ”min-max convex hull” of X .
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The Min-Max Convex Hull

Definition

MM(X ) = smallest min-max closed set S containing X , i.e. x , y ∈ S ⇒ x ∧ y , x ∨ y ∈ S

MMconv(X ) = smallest min-max closed and convex set containing X .

• How can we find MMconv(X ) for X = {x1, . . . , xn} ⊆ Rd?

• Intuitive first proposal:

Start with X . Add points to X
until we get MM(X ).
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The Min-Max Convex Hull

Definition

MM(X ) = smallest min-max closed set S containing X , i.e. x , y ∈ S ⇒ x ∧ y , x ∨ y ∈ S

MMconv(X ) = smallest min-max closed and convex set containing X .

• How can we find MMconv(X ) for X = {x1, . . . , xn} ⊆ Rd?

• Intuitive first proposal:

Start with X . Add points to X
until we get MM(X ).

Take conv(MM(X )).

• Is it always true that MMconv(X ) = conv(MM(X ))?

No!
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The Min-Max Convex Hull
Lemma
Let X = {x1, . . . , xn}. If X ⊆ R2 or X ⊆ {0, 1}d , then,

MMconv(X ) = conv(MM(X )).

Now, consider X = {(0, 0, 0), (6, 0, 0), (6, 4, 0), (8, 4, 2)} ⊆ R3.

(0, 0, 0) (6, 0, 0)

(8, 4, 2)

(6, 4, 0)

(0, 0, 0) (6, 0, 0)

(8, 4, 2)
(6, 4, 1.5)

(6, 4, 0)

It turns out that
MM(X ) = X .

But
conv(MM(X )) is not min-max closed!

This is because:

(6, 4,
3

2
) = max{(6, 4, 0), (6, 3,

3

2
)} 6∈ conv(MM(X )).

Therefore,
conv(MM(X )) ( MMconv(X ).
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The 2-D Projections Theorem

Theorem (The 2-D Projections Theorem)
For any finite subset X ⊆ Rd . Then we have

MMconv(X ) =
⋂

1≤i<j≤d

π−1
ij

(
conv(πij (MM(X ))

)
.

πij : Rd → R,
x 7→ (xi , xj ).

Corollary (Queyranne and Tardella, 2006)
A subset C in Rd is a min-max closed convex polytope if and only if it is defined by a
finite collection of bimonotone linear inequalities.

A linear inequality a · x + b ≤ 0 is bimonotone if it has the
form

aixi + ajxj + b ≤ 0, where aiaj ≤ 0.
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Back to Log-concave and MTP2 Maximum Likelihood
Estimation

1. Does the MLE under log-concavity and MTP2 exist with probability 1 and, if so,
is it unique? Yes.

2. What is the shape of the MLE under log-concavity and MTP2?

2.1 What is the support of the MLE? MMconv(X ); We can compute it.
2.2 Is the MLE always exp(tent function)?

3. Which tent functions are allowed?

4. Can we compute the MLE?
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Supermodular Tent Functions

Recall that p = exp(h) is MTP2 if and only if h is supermodular, i.e.

h(x) + h(y) ≤ h(x ∧ y) + h(x ∨ y), for all x , y ∈ Rd .

Theorem (R., Sturmfels, Tran, Uhler)
Let X ⊂ Rd be a finite set of points. A tent function h is supermodular if and only if
all of the walls of the subdivision h induces are bimonotone.

(0, 0) (0, 1) (0, 0) (0, 1)

(1, 0) (1, 1) (1, 0) (1, 1)

Remark
If we want to find the best supermodular hX ,y , we need to optimize over the set of
heights y that induce bimonotone subdivisions.

• In general not convex.

• Example: X = {0, 1} × {0, 1} × {0, 1, 2}.
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(0, 0) (0, 1) (0, 0) (0, 1)
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h(x)

h(y)h(x ∧ y)

h(x ∨ y)

Remark
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heights y that induce bimonotone subdivisions.

• In general not convex.

• Example: X = {0, 1} × {0, 1} × {0, 1, 2}.
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Is the MLE is the exponential of a tent function?

1. Does the MLE under log-concavity and MTP2 exist with probability 1 and, if so,
is it unique? Yes.

2. What is the shape of the MLE under log-concavity and MTP2?

2.1 What is the support of the MLE? MMconv(X ); We can compute it.
2.2 Is the MLE always exp(tent function)?

3. Which tent functions are allowed? Bimonotone tent functions.

4. Can we compute the MLE?
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Why is the Log-concave MLE the exponential of a tent
function?

Recall:

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is a density
and p is log-concave.

Theorem (Cule, Samworth and Stewart 2008)

• With probability 1, a log-concave maximum likelihood estimator p̂ exists and is
unique.

• Moreover, log(p̂) is a ’tent-function’ supported on the convex hull of the data
P(X ) = conv(x1, . . . , xn).

Log-concave density estimation 3

Fig. 1. The ‘tent-like’ structure of the graph of the logarithm of the maximum likelihood estimator for bivariate
data.

(2009) have studied its theoretical properties. Rufibach (2007) compared di↵erent algorithms for
computing the univariate estimator, including the iterative convex minorant algorithm (Groeneboom
and Wellner, 1992; Jongbloed, 1998), and three others. Dümbgen, Hüsler and Rufibach (2007)
also present an Active Set algorithm, which has similarities with the vertex direction and vertex
reduction algorithms described in Groeneboom, Jongbloed and Wellner (2008). Walther (2010)
provides a nice recent review article on inference and modelling with log-concave densities. Other
recent related work includes Seregin and Wellner (2009), Schuhmacher, Hüsler and Dümbgen (2010),
Schuhmacher and Dümbgen (2010) and Koenker and Mizera (2010). For univariate data, it is also
well-known that there exist maximum likelihood estimators of a non-increasing density supported on
[0,1) (Grenander, 1956) and of a convex, decreasing density (Groeneboom, Jongbloed and Wellner,
2001).

Figure 1 gives a diagram illustrating the structure of the maximum likelihood estimator on the
logarithmic scale. This structure is most easily visualised for two-dimensional data, where one can
imagine associating a ‘tent pole’ with each observation, extending vertically out of the plane. For
certain tent pole heights, the graph of the logarithm of the maximum likelihood estimator can be
thought of as the roof of a taut tent stretched over the tent poles. The fact that the logarithm of
the maximum likelihood estimator is of this ‘tent function’ form constitutes part of the proof of its
existence and uniqueness.

In Sections 3.1 and 3.2, we discuss the computational problem of how to adjust the n tent pole
heights so that the corresponding tent functions converge to the logarithm of the maximum likelihood
estimator. One reason that this computational problem is so challenging in more than one dimension
is the fact that it is di�cult to describe the set of tent pole heights that correspond to concave
functions. The key observation, discussed in Section 3.1, is that it is possible to minimise a modified
objective function that is convex (though non-di↵erentiable). This allows us to apply the powerful
non-di↵erentiable convex optimisation methodology of the subgradient method (Shor, 1985) and a
variant called Shor’s r-algorithm, which has been implemented by Kappel and Kuntsevich (2000).

As an illustration of the estimates obtained, Figure 2 presents plots of the maximum likelihood
estimator, and its logarithm, for 1000 observations from a standard bivariate normal distribution.
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Why is the Log-concave MLE the exponential of a tent
function?

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is a density

and p is log-concave.

log(p∗)

y1

y2

y3

Proof of theorem:

• Suppose that p∗ is the MLE and that log p∗ is not a tent function.

• Let yi = log p∗(xi ), i = 1, . . . , n.

• Consider p = exp(hX ,y ). It gives a higher objective value than p∗.

• Thus, p∗ has to be a tent function.
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Proving that the Log-concave MTP2 MLE is the
exponential of a tent function

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is a log-concave density

and p is MTP2.

log(p∗)
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Proving that the Log-concave MTP2 MLE is the
exponential of a tent function

maximizep

n∑
i=1

wi log(p(xi ))

s.t. p is a log-concave density

and p is MTP2.

log(p∗)
log(p)

Proof that the MLE is a tent function:

• Suppose that p∗ is the MLE and that log p∗ is not a tent function

• Let yi = log p∗(xi ), i = 1, . . . , n.

• Consider p = exp(hX ,y ). It gives a higher objective value than p∗.

• Problem: is p = exp(hX ,y ) always MTP2 assuming that p∗ is MTP2?

• Thus, p∗ has to be a tent function.
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When is the MLE the exponential of a tent function?
Definition
Let X = {x1, . . . , xn} ⊆ Rd be a min-max closed configuration. Then X is tidy if

The restriction of hX ,y to X ⇐⇒ The whole function hX ,y

is supermodular is supermodular.

Example

(0, 0) (0, 1)

(1, 0) (1, 1)

If X = {(0, 0), (0, 1), (1, 0), (1, 1)}, then X is tidy because

y(0,0) + y(1,1) ≥ y(0,1) + y(1,0) =⇒ h(X ,y) is supermodular.

Example
Consider again

X = {(0, 0, 0), (6, 0, 0), (6, 4, 0), (8, 4, 2), (6, 4,
3

2
)}.

• The restriction of any hX ,y to X is supermodular.

• But not all hX ,y are supermodular! =⇒ Not tidy.
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When is the MLE the exponential of a tent function?

Theorem (R., Sturmfels, Tran, Uhler)

Let X ⊆ Rd be min-max closed such that conv(X ) = MMconv(X ).
Then, X is tidy if

• X ⊆ R2, or

• X ⊆ {0, 1}d .

Therefore, the MLE for configurations in R2 and in {0, 1}d is always a
tent function.

Conjecture
These are the only tidy configurations.
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Optimization Problem in the Tidy Case
Theorem (R., Sturmfels, Tran, Uhler)
If X ⊆ Rd is a tidy configuration, then,

• The MLE p∗ is the exponential of a p∗ = exp(hX ,y∗ ), and

• The set of heights for which exp(hX ,y ) is MTP2 is a convex polytope S.

Therefore, we can use, e.g. projected gradient descent or the conditional gradient
method, to find the best heights y∗.

maximizey

n∑
i=1

wiyi −
∫

exp(hX ,y )

s.t. y ∈ S.
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What is the shape of the MLE in the general case?

• In R2 and {0, 1}d the MLE is the exponential of a tent function.

• If the log-concave MLE φ is a supermodular tent function, then φ is also the
MTP2 log-concave MLE.

• Let X = {(0, 0, 0), (6, 0, 0), (6, 4, 0), (8, 4, 2), (6, 4, 3
2

)}, w = 1
28

(15, 1, 1, 1, 10).
The log-concave MLE φ is not supermodular.

(0, 0, 0) (6, 0, 0)

(8, 4, 2)
(6, 4, 1.5)

(6, 4, 0)
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What is the shape of the MLE in the general case?

• In R2 and {0, 1}d the MLE is the exponential of a tent function.

• If the log-concave MLE φ is a bimonotone tent function, then φ is also the
MTP2 log-concave MLE.

• Let X = {(0, 0, 0), (6, 0, 0), (6, 4, 0), (8, 4, 2), (6, 4, 3
2

)}, w = 1
28

(15, 1, 1, 1, 10).
The log-concave MLE φ is not bimonotone.

(0, 0, 0) (6, 0, 0)

(8, 4, 2)
(6, 4, 1.5)

(6, 4, 0)

(7.5, 4, 1.5)
(6, 3, 1.5)

the MLE is a tent function on X ∪ {(6, 3, 3
2

), (7.5, 4, 3
2

)} with subdivision as above.
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Conjecture
Let X = {x1, . . . , xn} ⊂ Rd be a point configuration, and let w ∈ Rn be the
corresponding set of weights. Let φ : Rd → R be the log-concave maximum likelihood
estimator (which is a tent function above X), and let ∆ be the subdivision it induces.

1. If ∆ is a bimonotone subdivision, then φ is also the MTP2 log-concave MLE.

2. If ∆ is not bimonotone, consider the hyperplanes spanned by each of the
bimonotone codimension 1 cells of ∆, and intersect conv(X ) with them. Call
this new subdivision ∆′. The MTP2 log-concave maximum likelihood estimator
is a piecewise linear function whose underlying subdivision is ∆′ or any
subdivision refined by ∆′.

46 / 48



Summary and Remaining Questions

Summary:

• We showed that the MLE under log-concavity and MTP2 exists and
is unique with probability one.

• We showed that in some cases it is the exponential of a tent
function, and we can compute it using convex optimization over a
finite-dimensional convex set.

• We saw which tent functions are supermodular, i.e. are candidates
for the MLE.

Remaining questions and future work

• Characterize the shape of the MLE in the general case.

• Study the sample complexity of solving the problem.

• Design and analyze algorithms for finding the MLE.

47 / 48



Announcement

Applied Algebra Day
Saturday, Nov 17
9:30AM - 5PM
MIT, E17-304

Thank you!

48 / 48



Announcement

Applied Algebra Day
Saturday, Nov 17
9:30AM - 5PM
MIT, E17-304

Thank you!

48 / 48


