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Density estimation

Given i.i.d. samples X = {x1,...,x,} C R from an unknown
distribution on RY with density p, can we estimate p?

)
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Density estimation

Given i.i.d. samples X = {x1,...,x,} C R from an unknown
distribution on RY with density p, can we estimate p?

m parametric: assume that p lies in some parametric family, and
estimate parameters
o finite-dimensional problem
e too restrictive; the real-world distribution might not lie in the
specified parametric family

m non-parametric: assume that p lies in a non-parametric family, e.g.

impose shape-constraints on p (convex, log-concave, monotone,
etc.)
e infinite-dimensional problem
e need constraints that are:
e strong enough so that there is no spiky behavior
e weak enough so that function class is large

)
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Shape-constrained density estimation

e monotonically decreasing densities: [Grenander 1956, Rao 1969]
e convex densities: [Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001]
° lOg-ConcaVe densities: [Cule, Samworth, and Stewart 2008]

e generalized additive models with shape constraints: [Chen and Samworth
2016]

e this talk: totally positive and log-concave densities
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MTP, distributions

e A distribution with density p on X C R? is multivariate totally
positive of order 2 (or MTP,) if

p(x)p(y) < p(x Ay)p(xVy) forallx,y € X,

where x Ay and x V y are the componentwise minimum and
maximum.
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MTP, distributions

e A distribution with density p on X C R? is multivariate totally
positive of order 2 (or MTP,) if

p(x)p(y) < p(x Ay)p(xVy) forallx,y € X,

where x Ay and x V y are the componentwise minimum and
maximum.

e MTP; is the same as log-supermodular.

log(p(x))+log(p(y)) < log(p(xAy))+log(p(xVy)) forall x,y € X.
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MTP,

distributions

A distribution with density p on X C RY is multivariate totally
positive of order 2 (or MTP,) if

p(x)p(y) < p(x Ay)p(xVy) forallx,y € X,

where x Ay and x V y are the componentwise minimum and
maximum.

MTP; is the same as log-supermodular.

log(p(x))+log(p(y)) < log(p(xAy))+log(p(xVy)) forall x,y € X.

A random vector X taking values in R? is positively associated if for
any non-decreasing functions ¢, : R — R

cov(¢(X), ¥(X)) = 0.

MTP2 |mp||es positive association (Fortuin Kasteleyn Ginibre inequality, 1971).
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Properties of M TP, distributions

Theorem (Fallat, Lauritzen, Sadeghi, Uhler, Wermuth and Zwiernik, 2015)
IFX = (Xq,...,Xq) is MTP,, then

(i) any marginal distribution is MTP;,
(ii) any conditional distribution is MTP;,

(iii) X has the marginal independence structure

Xi L Xj <= cov(X;, Xj) = 0.

Theorem (Karlin and Rinott, 1980)

If p(x) > 0 and p is MTP, for any pair of coordinates when the others
are held constant, then p is MTP;.
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Examples of MTP, distributions

¢ A Gaussian random variable X ~ N(u,¥) is MTP, whenever ¥ 1
is an M-matrix, i.e. its off-diagonal entries are nonpositive.

e The joint distribution of observed variables influenced by one hidden

variable

e Very common in real data: e.g. 1Q test scores, phylogenetics data,
financial econometrics data, and others

e Many models imply MTP5:

Ferromagnetic Ising models
Order statistics of i.i.d. variables
Brownian motion tree models

°
°
°
® Latent tree models (e.g. single factor analysis models)

6
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Maximum Likelihood Estimation

Given i.i.d. samples X = {x1,...,x,} C R with weights
w = (wi,...,w,) (where wy,...,w, >0, > w; =1) from a distribution
p on R, can we estimate p?
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Maximum Likelihood Estimation

Given i.i.d. samples X = {xq,...,x,} C R with weights
w = (wi,...,w,) (where wy,...,w, >0, > w; =1) from a distribution
p on R, can we estimate p?

The log-likelihood of observing X = {xi, ..., x,} with weights
w = (wy,...,w,) if they are drawn i.i.d. from p is (up to an additive
constant)

(X, w) = Z w; log(p(x;))-
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Maximum Likelihood Estimation

Given i.i.d. samples X = {xq,...,x,} C R with weights
w = (wi,...,w,) (where wy,...,w, >0, > w; =1) from a distribution
p on R, can we estimate p?

The log-likelihood of observing X = {xi, ..., x,} with weights
w = (wy,...,w,) if they are drawn i.i.d. from p is (up to an additive
constant)

(X, w) = Z w; log(p(x;))-

We would like to

n

maximize, Z w; log(p(x;))
i=1

s.t. p is an MTP, density.
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Maximum Likelihood Estimation under MTP,

Suppose we observe two points: X = {x;,x2} C R?. We can find a
sequence of MTP, densities py, p2, p3, . .. such that

lp(X) =00 asn— oco.

Thus, the MLE doesn’t exist.
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Maximum Likelihood Estimation under MTP,

Suppose we observe two points: X = {x;,x2} C R?. We can find a
sequence of MTP, densities py, p2, p3, . .. such that

lp(X) =00 asn— oco.

D o
zAy| v

Thus, the MLE doesn’t exist.

48



Maximum Likelihood Estimation under MTP,
To ensure that the likelihood function is bounded, we impose the

condition that p is log-concave.

n

maximize, Z w; log(p(x;))
i=1

s.t. p is an MTP, density,
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Maximum Likelihood Estimation under MTP,
To ensure that the likelihood function is bounded, we impose the

condition that p is log-concave.

n

maximize, Z w; log(p(x;))
i=1

s.t. p is an MTP, density,

and p is log-concave.

A function f : RY — R is log-concave if its logarithm is concave.
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Maximum Likelihood Estimation under MTP,

To ensure that the likelihood function is bounded, we impose the
condition that p is log-concave.

n

maximize, Z w; log(p(x;))

i=1
s.t. p is an MTP, density,

and p is log-concave.

A function f : RY — R is log-concave if its logarithm is concave.

e Log-concavity is a natural assumption because it ensures the density
is continuous and includes many known families of parametric
distributions.

o Log-concave families:
® Gaussian; Uniform(a, b); Gamma(k, 0) for k > 1; Beta(a, b) for a, b > 1.

e Maximum likelihood estimation under log-concavity is a well-studied
problem (Cule et al. 2008, Diimbgen et al. 2009, Schuhmacher et
al. 2010, ...).
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Maximum Likelihood Estimation under Log-Concavity

n

maximize, Z w; log(p(x;))
i=1
s.t. p is a density

and p is log-concave.
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Maximum Likelihood Estimation under Log-Concavity

n

maximize, Z w; log(p(x;))
i=1
s.t. p is a density

and p is log-concave.

Theorem (Cule, Samworth and Stewart 2008)

o With probability 1, a log-concave maximum likelihood estimator p
exists and is unique.
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Maximum Likelihood Estimation under Log-Concavity

n

maximize, Z w; log(p(x;))
i=1
s.t. p is a density

and p is log-concave.

Theorem (Cule, Samworth and Stewart 2008)

o With probability 1, a log-concave maximum likelihood estimator p
exists and is unique.

o Moreover, log(p) is a 'tent-function’ supported on the convex hull
of the data P(X) = conv(xy, ..., Xn).
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Optimizing over Tent Functions

Given points X = {xi,...,xn} and heights y = (y1,...,yn) € R", the tent function
hx, R =R

is the smallest concave function such that hx ,(x;) > y; for all i. Thus, p = exp(hx,y)
for some y.
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Optimizing over Tent Functions

Given points X = {xi,...,xn} and heights y = (y1,...,yn) € R", the tent function
hx, R =R

is the smallest concave function such that hx ,(x;) > y; for all i. Thus, p = exp(hx,)
for some y.

n
maximize, Z w; log(p(x;))
i=1
s.t. p is a density

and p is log-concave.

INFINITE DIMENSIONAL
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Optimizing over Tent Functions

Given points X = {xi,...,xn} and heights y = (y1,...,yn) € R", the tent function

hx, R =R
is the smallest concave function such that hx ,(x;) > y; for all i. Thus, p = exp(hx,)
for some y.
n n
maximizep Z w; log(p(x;)) maximizey cgn Z w; log exp(hx,y (xi))
i=1 i=1
s.t. p is a density
and p is log-concave. sit.  exp(hx,,) is a density.
INFINITE DIMENSIONAL FINITE DIMENSIONAL
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Optimizing over Tent Functions

Given points X = {xi,...,xp} and heights y = (y1,...,yn) € R", the tent function

. Rd
hx, :RY 5 R
is the smallest concave function such that hx ,(x;) > y; for all i. Thus, p = exp(hx,,)
for some y.
n n
maximizep Z w; log(p(x;)) maximize, cgn Z wihx ,(x;)
i=1 i=1
s.t. p is a density
and p is log-concave. st.  exp(hx,,) is a density.
INFINITE DIMENSIONAL FINITE DIMENSIONAL
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Optimizing over Tent Functions

Given points X = {xi,...,xp} and heights y = (y1,...,yn) € R", the tent function

. Rd
hx, :RY 5 R
is the smallest concave function such that hx ,(x;) > y; for all i. Thus, p = exp(hx,,)
for some y.
n n
maximizep Z w; log(p(x;)) maximize, cgn Z Wi
i=1 . i=1
s.t. p is a density
and p is log-concave. st.  exp(hx,,) is a density.
INFINITE DIMENSIONAL FINITE DIMENSIONAL
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Optimizing over Tent Functions

Given points X = {xy,...,xn} and heights y = (y1,...,yn) € R", the tent function

hx, :RY =R
is the smallest concave function such that hx ,(x;) > y; for all i. Thus, p = exp(hx,y)
for some y.
n n
maximizep Z w; log(p(x;)) maximize, cgn Z W;Yyi
i=1 i=1
s.t. p is a density
and p is log-concave. s.t. /eXP(hX,y(f))dt =1
INFINITE DIMENSIONAL FINITE DIMENSIONAL
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Optimizing over Tent Functions

Given points X = {xy,...,xn} and heights y = (y1,...,yn) € R", the tent function
hx, :RY - R

is the smallest concave function such that hx ,(x;) > y; for all i. Thus, p = exp(hx,,)
for some y.

n
maximize, Z w; log(p(xi))

n
=1 . max, cRrn wiy; — | exp(h t))dt
s.t. p is a density yER ; iYi / p(hx,y (1))
and p is log-concave.

INFINITE DIMENSIONAL FINITE DIMENSIONAL
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Maximum Likelihood Estimation under Log-concavity and
MTP,

Questions:
1. Does the MLE under log-concavity and MTP» exist with probability 1 and, if so,
is it unique?
2. What is the shape of the MLE under log-concavity and MTP,?

2.1 What is the support of the MLE?
2.2 Is the MLE always exp(tent function)?

3. Which tent functions are allowed?

4. Can we compute the MLE?

17 /48



Maximum Likelihood Estimation under Log-concavity and
MTP,

Questions:
1. Does the MLE under log-concavity and MTP» exist with probability 1 and, if so,
is it unique?

2. What is the shape of the MLE under log-concavity and MTP,?

2.1 What is the support of the MLE?
2.2 Is the MLE always exp(tent function)?

3. Which tent functions are allowed?

4. Can we compute the MLE?

&g
=

—

Recall: p is MTP; if and only if log(p) is supermodular, i.e.

log p(x) + log p(y) < log p(x A y) +log p(x V y), for all x,y.
17 /48



Existence and Uniqueness of the MLE

Theorem (R., Sturmfels, Tran, Uhler)

The maximum likelihood estimator under log-concavity and M TP,
exists and is unique with probability 1 as long as there are at least
3 samples.

Proof uses convergence properties for log-concave distributions,
and does not shed light on the shape of the MLE.
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The Support of the MLE

Consider the following samples:
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The Support of the MLE

Under log-concavity, the support of the MLE is the convex hull:
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The Support of the MLE

Under log-concavity and MTP, we need the density to be nonzero at
more points:
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The Support of the MLE

Under log-concavity and MTP, we need the density to be nonzero at
more points:

and we need the convex hull of all of these points.

Support of the MLE = "min-max convex hull" of X.
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The Min-Max Convex Hull

Definition
MM(X) = smallest min-max closed set S containing X, i.e. x,y € S=xAy,xVy €S

MMconv(X) = smallest min-max closed and convex set containing X.
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The Min-Max Convex Hull

Definition
MM(X) = smallest min-max closed set S containing X, i.e. x,y € S=xAy,xVy €S

MMconv(X) = smallest min-max closed and convex set containing X.

® How can we find MMconv(X) for X = {x1,...,x,} C R?
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The Min-Max Convex Hull

Definition
MM(X) = smallest min-max closed set S containing X, i.e. x,y € S=xAy,xVy €S

MMconv(X) = smallest min-max closed and convex set containing X.

® How can we find MMconv(X) for X = {x1,...,x,} C R?

® |[ntuitive first proposal:

Start with X. Add points to X

until we get MM(X).
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Definition
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MMconv(X) = smallest min-max closed and convex set containing X.

® How can we find MMconv(X) for X = {x1,...,x,} C R?
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The Min-Max Convex Hull

Definition
MM(X) = smallest min-max closed set S containing X, i.e. x,y € S=xAy,xVy €S

MMconv(X) = smallest min-max closed and convex set containing X.

® How can we find MMconv(X) for X = {x1,...,x,} C R?

® |[ntuitive first proposal:

Start with X. Add points to X Take conv(MM(X)).

until we get MM(X).

26 /48



The Min-Max Convex Hull

Definition
MM(X) = smallest min-max closed set S containing X, i.e. x,y € S=xAy,xVy €S
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The Min-Max Convex Hull

Definition
MM(X) = smallest min-max closed set S containing X, i.e. x,y € S=xAy,xVy €S

MMconv(X) = smallest min-max closed and convex set containing X.

® How can we find MMconv(X) for X = {x1,...,x,} C R?

® |[ntuitive first proposal:

Start with X. Add points to X Take conv(MM(X)).

until we get MM(X).

® s it always true that MMconv(X) = conv(MM(X))?  No!
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The Min-Max Convex Hull

Lemma
Let X = {x1,...,xn}. f X CR? or X C {0,1}, then,

MMconv(X) = conv(MM(X)).

27/48



The Min-Max Convex Hull

Lemma
Let X = {x1,...,xn}. f X CR? or X C {0,1}, then,

MMconv(X) = conv(MM(X)).

Now, consider X = {(0,0,0), (6,0,0), (6,4,0),(8,4,2)} C R3.

It turns out that

MM(X) = X.

But
conv(MM(X)) is not min-max closed!
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The Min-Max Convex Hull

Lemma
Let X = {x1,...,xn}. f X CR? or X C {0,1}, then,

MMconv(X) = conv(MM(X)).

Now, consider X = {(0,0,0), (6,0,0), (6,4,0),(8,4,2)} C R3.

(8,4,2)

It turns out that

MM(X) = X.

But
conv(MM(X)) is not min-max closed!

This is because:

(6, 4, g) — max{(6,4,0), (6,3, g)} ¢ conv(MM(X)).
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The Min-Max Convex Hull

Lemma
Let X = {x1,...,xn}. f X CR? or X C {0,1}, then,

MMconv(X) = conv(MM(X)).

Now, consider X = {(0,0,0), (6,0,0), (6,4,0),(8,4,2)} C R3.

(8,4,2)

It turns out that

MM(X) = X.

But
conv(MM(X)) is not min-max closed!

This is because:
3 3
(6,4, E) = max{(6, 4,0), (6, 3, 5)} & conv(MM(X)).

Therefore,
conv(MM(X)) € MMconv(X).

27 /48



The 2-D Projections Theorem

Theorem (The 2-D Projections Theorem )
For any finite subset X C RY. Then we have
jj RY - R,
MMconv(X) = m 7r,71 (conv(mij( MM(X))) . x = (i, Xj)-

y
1<i<j<d
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The 2-D Projections Theorem

Theorem (The 2-D Projections Theorem )
For any finite subset X C RY. Then we have
jj RY - R,
MMconv(X) = m 7r,.;1 (conv(mij( MM(X))) . x = (i, Xj)-
1<i<j<d

Corollary (Queyranne and Tardella, 2006)

A subset C in R? is a min-max closed convex polytope if and only if it is defined by a
finite collection of bimonotone linear inequalities.

A linear inequality a- x + b < 0 is bimonotone if it has the
form

aix; +ajx;+b <0, where aja; <0.
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Back to Log-concave and MTP, Maximum Likelihood
Estimation

1. Does the MLE under log-concavity and MTP, exist with probability 1 and, if so,
is it unique? Yes.
2. What is the shape of the MLE under log-concavity and MTP,?

2.1 What is the support of the MLE?  MMconv(X); We can compute it.
2.2 Is the MLE always exp(tent function)?

3. Which tent functions are allowed?
4. Can we compute the MLE?
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Supermodular Tent Functions

Recall that p = exp(h) is MTP; if and only if h is supermodular, i.e.

h(x) + h(y) < h(x Ay) + h(xVy), forall x,y € R%.

Theorem (R., Sturmfels, Tran, Uhler)

Let X C RY be a finite set of points. A tent function h is supermodular if and only if
all of the walls of the subdivision h induces are bimonotone.

/N>

(1,0 (1,1) (1,0 (1,1)

(0,0) (0, 1) (0,0) (0, 1)

Remark
If we want to find the best supermodular hx ,, we need to optimize over the set of
heights y that induce bimonotone subdivisions.

® |n general not convex.
® Fxample: X ={0,1} x {0,1} x {0,1,2}.

30 /48



Supermodular Tent Functions

Recall that p = exp(h) is MTP; if and only if h is supermodular, i.e.

h(x) + h(y) < h(x Ay) + h(xVy), forall x,y € R%.

Theorem (R., Sturmfels, Tran, Uhler)

Let X C RY be a finite set of points. A tent function h is supermodular if and only if
all of the walls of the subdivision h induces are bimonotone.

e

(1,0 (1,1) (1,0 (1,1)

(0,0) (0,1) (0,0) (0, 1)

Remark
If we want to find the best supermodular hx ,, we need to optimize over the set of
heights y that induce bimonotone subdivisions.

® |n general not convex.
® Fxample: X ={0,1} x {0,1} x {0,1,2}.
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Is the MLE is the exponential of a tent function?

1. Does the MLE under log-concavity and MTP» exist with probability 1 and, if so,
is it unique? Yes.
2. What is the shape of the MLE under log-concavity and MTP,?

2.1 What is the support of the MLE?  MMconv(X); We can compute it.
2.2 Is the MLE always exp(tent function)?

3. Which tent functions are allowed? Bimonotone tent functions.

4. Can we compute the MLE?
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Why is the Log-concave MLE the exponential of a tent
function?

Recall:
n
maximizep Z w; log(p(x;))
i=1
s.t. p is a density
and p is log-concave.

Theorem (Cule, Samworth and Stewart 2008)

® With probability 1, a log-concave maximum likelihood estimator p exists and is
unique.

® Moreover, log(p) is a 'tent-function’ supported on the convex hull of the data
P(X) = conv(x1,...,%n).
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Why is the Log-concave MLE the exponential of a tent
function?

n
maximize, Z w; log(p(x;))
i=1
s.t. p is a density

and p is log-concave.

Proof of theorem:

Suppose that p* is the MLE and that log p* is not a tent function.

°

® Lety, =logp*(x;),i=1,...,n.

® Consider p = exp(hy,,). It gives a higher objective value than p*.
°

Thus, p* has to be a tent function.

34

48



Why is the Log-concave MLE the exponential of a tent
function?

n
maximize, Z w; log(p(x;))

i=1 log(p™)
s.t. p is a density
and p is log-concave.

Proof of theorem:
® Suppose that p* is the MLE and that log p* is not a tent function.
® Lety; =logp*(x;),i=1,...,n.
® Consider p = exp(hy,,). It gives a higher objective value than p*.
°

Thus, p* has to be a tent function.
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Why is the Log-concave MLE the exponential of a tent
function?

n
maximizep Z w; log(p(x;))
i=1
s.t. p is a density log(p™)

: log(p)
and p is log-concave.

Proof of theorem:

Suppose that p* is the MLE and that log p* is not a tent function.
Let y; = log p*(x;),i =1,...,n.

Consider p = exp(hx,,). It gives a higher objective value than p*.

Thus, p* has to be a tent function.
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Proving that the Log-concave MTP, MLE is the
exponential of a tent function

n
maximize, Z w; log(p(x;))

i=1 log(p®)
s.t. p is a log-concave density
and pis MTP;.

Proof that the MLE is a tent function:
® Suppose that p* is the MLE and that log p* is not a tent function
® Lety; =logp*(x;),i=1,...,n.
® Consider p = exp(hy,,). It gives a higher objective value than p*.
°

Thus, p* has to be a tent function.
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Proving that the Log-concave MTP, MLE is the
exponential of a tent function

n
maximize, Z w; log(p(x;))

i=1
s.t. p is a log-concave density
and pis MTP,.

log(p™)
log(p)

Proof that the MLE is a tent function:
® Suppose that p* is the MLE and that log p* is not a tent function
® lety; =logp*(x;),i=1,...,n.

® Consider p = exp(hy,,). It gives a higher objective value than p*.
® Problem: is p = exp(hx,,) always MTP, assuming that p* is MTP,?

® Thus, p* has to be a tent function.
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When is the MLE the exponential of a tent function?

Definition
Let X = {x1,...,xn} C RY be a min-max closed configuration. Then X is tidy if

The restriction of hx , to X <= The whole function hx ,

is supermodular is supermodular.

Example
If X ={(0,0),(0,1),(1,0),(1,1)}, then X is tidy because
o ) Y0,0) + ¥(1,1) = ¥0,1) + ¥1,00 = h(x,y) is supermodular.
(0,0) (0,1)
Example

Consider again

X = {(0,0,0), (6,0,0), (6,4, 0), (8,4, 2), (6,4, g)}.

® The restriction of any hx , to X is supermodular.

® But not all hyx , are supermodular! = Not tidy.
39/48



When is the MLE the exponential of a tent function?

Theorem (R., Sturmfels, Tran, Uhler)

Let X C R? be min-max closed such that conv(X) = MMconv(X).
Then, X is tidy if

e X CR2 or
o X C {O,l}d.

Therefore, the MLE for configurations in R? and in {0,1}? is always a
tent function.
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Theorem (R., Sturmfels, Tran, Uhler)

Let X C R? be min-max closed such that conv(X) = MMconv(X).
Then, X is tidy if

e X CR2 or
o X C {O,l}d.

Therefore, the MLE for configurations in R? and in {0,1}? is always a
tent function.

Conjecture
These are the only tidy configurations.
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Optimization Problem in the Tidy Case

Theorem (R., Sturmfels, Tran, Uhler)
If X CRY is a tidy configuration, then,
® The MLE p* is the exponential of a p* = exp(hx, =), and
® The set of heights for which exp(hx,,) is MTP» is a convex polytope S.

Therefore, we can use, e.g. projected gradient descent or the conditional gradient
method, to find the best heights y*.

n
maximizey ZWiy:‘ —/eXP(hX,y)
i=1
s.t. yesS.
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What is the shape of the MLE in the general case?

® In R? and {0,1}9 the MLE is the exponential of a tent function.

® |[f the log-concave MLE ¢ is a supermodular tent function, then ¢ is also the
MTP; log-concave MLE.

® Let X = {(0,0,0),(6,0,0),(6,4,0),(8,4,2),(6,4, )}, w = 5(15,1,1,1,10).

The log-concave MLE ¢ is not supermodular.

(0,0,0) (6.0,0)
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What is the shape of the MLE in the general case?

® In R? and {0,1}9 the MLE is the exponential of a tent function.

® |f the log-concave MLE ¢ is a bimonotone tent function, then ¢ is also the
MTP; log-concave MLE.

® Let X ={(0,0,0),(6,0,0),(6,4,0),(8,4,2),(6,4, 3)}, w = 5(15,1,1,1,10).

The log-concave MLE ¢ is not bimonotone.

(0,0,0) (6,0,0)

the MLE is a tent function on X U {(6, 3, % ,(7.5,4, %)} with subdivision as above.
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Conjecture

Let X = {x1,...,xn} C R? be a point configuration, and let w € R" be the
corresponding set of weights. Let ¢ : R — R be the log-concave maximum likelihood
estimator (which is a tent function above X), and let A be the subdivision it induces.

1. If A is a bimonotone subdivision, then ¢ is also the MTP, log-concave MLE.

2. If A is not bimonotone, consider the hyperplanes spanned by each of the
bimonotone codimension 1 cells of A, and intersect conv(X) with them. Call
this new subdivision A’. The MTP, log-concave maximum likelihood estimator
is a piecewise linear function whose underlying subdivision is A’ or any
subdivision refined by A’.
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Summary and Remaining Questions

Summary:

e We showed that the MLE under log-concavity and MTP; exists and
is unique with probability one.

o We showed that in some cases it is the exponential of a tent
function, and we can compute it using convex optimization over a
finite-dimensional convex set.

e We saw which tent functions are supermodular, i.e. are candidates
for the MLE.

Remaining questions and future work
e Characterize the shape of the MLE in the general case.
e Study the sample complexity of solving the problem.

e Design and analyze algorithms for finding the MLE.
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Thank you!
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